

CODIGO: 201-300-PRO05-FOR01

VERSIÓN: 1

PÁG: 1 de 5

PLAN DE ASIGNATURA

IDENTIFICACIÓN				
Nombre de la asignatura	Cálculo Multivariable			
Código de la asignatura	MT304B			
Programa Académico	INGENIERÍA DE SISTEMAS			
Créditos académicos	4			
Trabajo semanal del estudiante	Docencia directa: 4		Trabajo Independiente: 5	
Trabajo semestral del estudiante	144			
Pre-requisitos	Cálculo Integral			
Co-requisitos				
Departamento oferente	Licenciatura en	n Matemáticas y Física		
Tipo de Asignatura	Teórico: X	Teórico- Práctico:		Práctico:
Naturaleza de la Asignatura	Habilitable: X		No Habilitable:	
	Validable: X		No Validable:	
	Homologable: X		No Homologable:	

PRESENTACIÓN

El cálculo es uno de los mayores logros del intelecto humano, Newton y Leibniz desarrollaron las ideas del cálculo hace aproximadamente 300 años y desde entonces cada siglo ha demostrado la fuerza que tiene para responder a preguntas en matemáticas, física, ingeniería, ciencias sociales y ciencias biológicas. El cálculo vectorial optimiza modelos funcionales en los cuales el valor de una cantidad puede depender de dos o más valores, convirtiéndolo en un instrumento matemático ideal que permite comprender, plantear y solucionar problemas a partir de modelos propios, como aquellos relacionados con: áreas y volúmenes, trabajo, flujo de fluidos en tuberías abiertas o cerradas, de campos magnéticos y eléctricos en la materia o en el vacío, de campos gravitacionales, térmicos, de momentum, flujos de masa.

Cada semestre nos enfrentamos a la difícil tarea de intentar acercar las matemáticas a estudiantes cuya motivación principal no es su estudio. Las clases formales provocan rechazo en el alumnado y la resolución de ejercicios de habilidad y análisis, alejados de los problemas aplicados a cada disciplina que conoce el alumno, aumenta la aversión y el distanciamiento.

JUSTIFICACIÓN

Para poder aplicar el cálculo a problemas de la vida real, primero hay que entenderlo y por lo tanto practicarlo, esto se logra resolviendo problemas, pero esta práctica no se logra con ejercicios que solo potencian la mecánica y la memorización, sino aquellos que ayudan a entender la teoría, logran la comprensión y la intuición. Los resultados de los cursos de cálculo diferencial e integral de una variable son casos particulares de situaciones que al ser analizados podrían verse en forma más general dentro del curso de cálculo vectorial.

CODIGO: 201-300-PRO05-FOR01

VERSIÓN: 1

PLAN DE ASIGNATURA PÁG: 2 de 5

Una manera de involucrar a los estudiantes en el aprendizaje es ponerlos con material de apoyo que potencie su capacidad de análisis y deducción, y en proyectos de aplicación, además el uso adecuado de la tecnología, calculadoras gráficas y los computadores son poderosas herramientas para descubrir y comprender muchos conceptos.

OBJETIVO GENERAL

Identificar y relacionar los diferentes tipos de funciones de varias variables.

OBJETIVOS ESPECÍFICOS

Reconocer la importancia y la aplicación de las funciones de varias variables.

Conocer y aplicar los fundamentos del cálculo diferencial.

Comprender y aplicar el concepto de diferenciabilidad.

Resolver problemas de optimización.

Interpretar geométricamente y analizar el concepto de integral múltiple.

Manejar adecuadamente el cambio de coordenadas en integrales dobles y triples.

Interpretar geométricamente y analizar los conceptos de integral de línea y de integral de superficie.

Utilizar adecuadamente los teoremas fundamentales del análisis vectorial, Green, Stokes y Gauss.

COMPETENCIAS GENERALES Y ESPECÍFICAS

En este curso el estudiante:

- **Desarrolla** habilidades y destrezas que le permitan, al estudiante, mediante el razonamiento, el análisis, la visualización, la construcción la investigación y la reflexión interpretar de forma eficaz los diferentes fenómenos.
- Propone y plantea problemas prácticos conceptuales.
- Argumenta y justifica el porqué de las leyes y principios físicos a utilizar en la resolución de problemas prácticos teóricos y conceptuales específicos de las diferentes áreas de actividad de su profesión utilizando correctamente los códigos y símbolos propios de la asignatura.

Promueve y **despierta** en el estudiante sentido de trabajo en equipo, de responsabilidad, de solidaridad, sentido de identidad y pertenencia para ayudar a enriquecer el ejercicio de la academia. Al tiempo que valora y reconoce los aportes de las personas que han contribuido con el avance de la disciplina.

METODOLOGÍA

El curso se debe desarrollar desde un punto de vista intuitivo, como habilidad de

CODIGO: 201-300-PRO05-FOR01

VERSIÓN: 1

ASIGNATURA PÁG: 3 de 5

PLAN DE ASIGNATURA

pensamiento superior, respetando la formalidad y rigurosidad matemática; debe concretarse a través de estrategias, técnicas o métodos que tienen como marco referencial a las teorías del aprendizaje significativo con tendencias marcadas en el aprendizaje a través de la resolución de problemas. Se deben evitar la aplicación de técnicas conductistas que solo potencien el aprendizaje memorístico a corto plazo (memoria anecdótica)

ESTRATEGIAS METODOLÓGICAS

En el desarrollo del curso se tendrán presente las siguientes estrategias metodológicas que coadyuven con la consecución de los objetivos trazados:

- Estrategias generales:
 - 1. De acompañamiento directo al estudiante:
 - Exposición magistral.
 - Desarrollo de talleres o ejercicios de aplicación a través de situaciones problémicas.
 - Desarrollo de técnicas de trabajo grupal.
 - · Asesorías directas a los estudiantes.
 - Lectura e interpretación dirigida de textos de referencia bibliográfica que promoverán el análisis y la disertación de los conceptos.
 - Defensas orales de trabajos y tareas.
 - 2. De trabajo independiente del estudiante:
 - Solución de problemas propuestos en forma individual o grupal.
 - Investigación, organización de información, análisis de temas específicos.
 - Consultas a través de internet.
- Estrategias específicas:
 - 1. Para cada capítulo el estudiante realizará la lectura y análisis previo de los conceptos correspondiente. Las lecturas serán las correspondientes a cada capítulo del texto guía y deberán ser complementada con otros textos y conocimientos previos que traigan los estudiantes.
 - 2. Basados en la lectura previa el estudiante traerá sus inquietudes a la clase donde serán discutidas y resueltas por parte de los compañeros y el profesor.

Con lo comprendido en la lectura y la discusión en clase el estudiante realizará una ficha de lectura (según concertación de la evaluación). En ningún caso se busca transcribir conceptos de manera literal.

CONTENIDO

UNIDAD 1. FUNCIONES DE VARIAS VARIABLES

- 1.1. Geometría del espacio euclidiano
- 1.2. Funciones vectoriales

CODIGO: 201-300-PRO05-FOR01

VERSIÓN: 1

PLAN DE ASIGNATURA PÁG: 4 de 5

- 1.3. Campos escalares
- 1.4. Conceptos básicos de topología en Rn
- 1.5. Límites y continuidad
- 1.6. Derivadas de funciones de valor vectorial
- 1.7. Derivadas parciales
- 1.8. Derivadas direccionales

UNIDAD 2. DIFERENCIABILIDAD

- 2.1. La diferencial
- 2.2. Gradiente y aplicaciones
- 2.3. Derivadas de orden superior
- 2.4. Regla de la cadena
- 2.5. Derivación implícita
- 2.6. Máximos y mínimos
- 2.7. Multiplicadores de Lagrange

UNIDAD 3. INTEGRACIÓN MÚLTIPLE

- 3.1. Integral doble de funciones escalonadas
- 3.2. Integral doble sobre rectángulos
- 3.3. Integral doble sobre regiones más generales
- 3.4. Cambio de coordenadas en integrales dobles
- 3.5. Aplicaciones con integrales dobles
- 3.6. Integrales triples
- 3.7. Cambio de coordenadas en integrales triples
- 3.8. Aplicaciones con integrales triples

UNIDAD 4. ANÁLISIS VECTORIAL

- 4.1. Integral de línea de campos escalares
- 4.2. Integral de línea de campos vectoriales
- 4.3. Teorema fundamental del cálculo para integrales de línea
- 4.4. Teorema de Green
- 4.5. Superficies parametrizadas
- 4.6. Integral de superficie de campos escalares
- 4.7. Integral de superficie de campos vectoriales
- 4.8. Teorema de Stokes
- 4.9. Teorema de Gauss

EVALUACIÓN

Según reglamento estudiantil el docente debe reportar tres (3) calificaciones. Dos (2) parciales con valor de 30% y una final con valor de 40%. Para efectos de cada uno de los reportes el docente deberá aplicar evaluaciones que permitan evidenciar en el estudiante competencias argumentativas, prepositivas e interpretativas de acuerdo con las

CODIGO: 201-300-PRO05-FOR01

VERSIÓN: 1

PÁG: 5 de 5

PLAN DE ASIGNATURA

pedagogías contemporáneas.

Se considera improcedente aplicar una única y un mismo tipo de evaluación para cada reporte.

REFERENCIAS BIBLIOGRÁFICAS

TEXTOS DE CONSULTA

- 1. George B. Thomas y Ross L. Finney, Cálculo en varias variables. 9ª. Edición. Editorial Addison-Wesley Logman, México 1998.
- 2. James Stewart, Cálculo multivariable. 4ª. Edición. Internacional Thomson Editores, México 2002.
- 3. Lois Leithold. Cálculo con Geometría Analítica
- 4. Gerald L. Bradley y Kart J. Smith, Cálculo de varias variables. Editorial Prentice Hall, España 1998.
- 5. Deborah Hughes-Hallet y Andrew M. Gleason. Cálculo. Compañía Editorial Continental, S.A. México 1995.
- 6. Tom Apóstol. Calculus. Tomo II. Editorial Reverté. Barcelona 1992.
- 7. Anthony J. Tromba y Jerrold E. Marsden. Cálculo Vectorial. Editorial Addison Wesley.
- 8. Claudio Pita Ruiz. Cálculo Vectorial. Editorial Prentice Hall.
- 9. Roland E.Larson y Robert P. Hostetler y Bruce H. Edwards. Cálculo y geometría analítica volumen 2, Editorial McGraw- Hill, Barcelona 1999.
- 10. Louis Leithold. El cálculo. Editorial Oxford University Press. México 1998.
- 11. Dennis G. Zill. Cálculo con geometría analítica. Grupo Editorial Ibero América. México 1987.
- 12. 12. Earl W. Swokowski. Cálculo con geometría analítica. Grupo Editorial Ibero América. México 1983.